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Abstract
This article examines the “sensor work” carried out in the development of autonomous vehicles which, without sensor data, would not and
arguably still do not, have the capacity to decide on where, and how, to drive. I begin by discussing three aspects of sensor technologies
considered to be the foundation for sensor work being carried out in autonomous vehicle settings, namely the distribution, processing, and
sourcing of sensor technologies and sensor data. The article considers how that much of this sensor work aids not only the operation of
autonomous vehicles but also their necessary “interoperation.” In studying four specific sensing methods from an operational perspective,
I consider how the interoperation between sensing devices and subsequent algorithmic, object-recognition, and motion planning procedures is
fundamental to the development of autonomous vehicles.

Lay Summary
This article examines the work carried out on sensor data in the development of autonomous vehicles. The capture, cleaning, and verification of
sensor data collected by different imaging technologies such as cameras, lidar, and radar, is considered essential if vehicle systems are to drive
themselves. However, there are many problems that arise in the collection and processing of sensor data that require specialized, and often
creative, techniques in order to prepare this data for further use by algorithmic systems within the vehicle itself. The article begins by considering
three aspects of sensing technologies that define their use in autonomous driving settings: the distribution of sensors within the vehicle, the
processing of sensor data between different components, and the sourcing of hardware that makes it possible for sensing technologies to work
in the first place. Through an analysis of how these different aspects and components operate together, the article aims to show how sensor-
mediated communication works in an autonomous vehicle setting. In order to show the breadth of this work, I examine four specific
techniques being undertaken by machine vision researchers.
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Introduction

Autonomous vehicles are dependent on sensor data, without
which they would not—and arguably, still do not—have the
capacity to decide on where, and how, to drive. However, to
make sensor data useful, a significant amount of work must
be performed on it. In this, sensor data must be calibrated,
cleaned, plotted, and validated, with unruly, unnecessary, and
unreliable data points excluded and erased from further use.
This article will consider the various kinds of “sensor work”
performed by practitioners in autonomous vehicle settings. In
doing so, it will argue that much of this sensor work aids not
simply the operation of autonomous vehicles, but their inher-
ent “interoperation.” In this, sensor work is integral to facili-
tate sensor-mediated communication between sensing systems
and subsequent algorithmic decision-making systems within
an autonomous vehicle.

I discuss what is meant by interoperability with the help of
Adrian Mackenzie and Anna Munster’s (2019) work on
“platform seeing.” Mackenzie and Munster discuss how the
“massive flows and iterations of images across and within
devices, platforms and deep learning models are plat-format-
ted in operation” (Mackenzie & Munster, 2019, p. 9,
authors’ emphasis), in which “[s]eeing is performed by a mul-
titude of human and computational agents whose ‘vision’
passes across and along platforms, eluding any singular coor-
dinating position” (Mackenzie & Munster, 2019, p. 9). More

broadly, that adapting to the world of machine vision
“involves a redistribution of seeing among classes of experts,
technical systems, hardware cloud computing and wireless
infrastructures, and among new regulatory frameworks and
norms” (McCosker & Wilken, 2020, p. 7). Machine vision
demands a certain level, and form, of connectivity: enrolling a
vast array of systems to make sense of sensor data.

I will begin this article by discussing three aspects of sensor
technologies useful for examining the sensor work being car-
ried out within autonomous vehicle settings. These three
aspects concern the distribution of sensors and sensing, the
processing of sensor data, and the sourcing of computational
hardware required for sensors to work. In introducing these
three aspects, I trace a trajectory from smartphones to auton-
omous vehicles, understanding the latter as extensions of mo-
bile sensing devices, “plat-formatted in operation”
(Mackenzie & Munster, 2019, p. 9). It is these aspects that
not only set the conditions for sensor-mediated communica-
tion, but set sensor-mediated communication apart from
other forms of (human) communication as well as wider, and
prior, forms of computer-mediated communication.

In the following two sections, I define the concept of
“interoperability,” drawing on work in media and communi-
cation studies on “operative images” (Farocki, 2004) and
“operational data” (Walker Rettburg, 2020), before introduc-
ing “operational analysis” (Friedrich & Hoel, 2023), an
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approach to studying sensing and algorithmic systems in
which tasks, practices, and stages of work along with the so-
called operational “pipeline” are foregrounded. Through par-
ticipant observation and discourse analysis of computer vision
conferences and technical literature, I empirically identify four
different techniques devised by machine vision researchers to
attend to the various problems that emerge in ensuring the in-
teroperability of sensor data with, and within, autonomous
vehicle systems. I end the article by discussing the implications
of studying such sensor work from an interoperational
perspective.

Autonomous vehicles as sensing devices

The starting point for this article is the examination of devel-
opments in machine vision that are contributing to sensor-
mediated communication, with respect to autonomous
vehicles. Sensor-mediated communication is being enabled
through parallel developments in multiple fields, but many of
these developments are being driven by the financial might of
big tech companies and, in particular, their continued invest-
ment in mobile devices and smartphones.

Thus, a discussion of sensor-mediated communication with
respect to autonomous vehicles must, in some sense, begin
with a discussion of the rise of mobile devices as sensing devi-
ces. Mobile devices are increasingly packed with different
kinds of sensors, generally capable of “translat[ing]. . .stimuli
such as light, temperature, speed, and vibration. . .into electri-
cal resistors and voltage signals” (Gabrys, 2016, p. 8) before
being converted into digitally readable form. This is a particu-
larly interesting start point as autonomous vehicles can be un-
derstood as scaled-up versions of mobile, sensing devices,
rather than just extensions of ordinary vehicles. Whilst this is,
in many senses, a product of using sensing devices as a heuris-
tic, it succeeds in drawing out some of the key developmental
challenges and tensions that have, up until now, stood in the
way of delivering autonomous driving in any form itself.

However, automobiles have long been understood both as
enabling communication, and as communicative devices
themselves. Wilken and Thomas (2019) have considered the
car as a “communication platform,” following the work of
Featherstone (2004). Here, Featherstone has argued that the
automobile enables multiple kinds of communication: first,
from the driver “out through the windscreen, windows and
mirrors to the inter-automobile moving figuration of cars”
(Featherstone, 2004, p. 8) on the road, second via mediated
technological forms, connecting the driver “to distant signifi-
cant others to help the daily business get done” (Featherstone,
2004, p. 8), and third, whilst “others come in via radio or
television, or are physically imported as recordings”
(Featherstone, 2004, p. 8). In this, Featherstone contends that
the modern automobile “becomes not just a vehicle for inde-
pendent travel, but a platform for multi-tasking”
(Featherstone, 2004, p. 8).

Increasingly, others have considered the car as a form of
“mobile spatial media” (Alvarez León, 2019) in itself, enabled
by the datafication (Hind, 2021; Martens & Zhao, 2021;
Meyers & Van Hoyweghen, 2020) and platformization of the
driving experience (Hind & Gekker, 2022; Hind et al., 2022;
Steinberg, 2021). Likewise, that “our cars, phones, laptops,
Global Positioning System devices, and so on allow for the
comprehensive capture of the data trails users leave as they go
about the course of their daily lives” (Andrejevic & Burdon,

2015, p. 20) such that cars can be said to play a significant
role in the rise of the “sensor society” (Andrejevic & Burdon,
2015, p. 31) altogether, with “the proliferation of sensors”
generally leading in “the direction of autonomy” (Andrejevic
& Burdon, 2015, p. 31) as autonomous vehicles demonstrate.
Here, following the argument above, the car simply becomes
an extension of the mobile sensing device, operated through
digital software, interconnected through apps and application
programming interfaces, generating specific kinds of automo-
tive user data, ordinarily funneled back to car manufacturers,
and associated technological partners, such as Google/
Alphabet or Intel-owned Mobileye (Pink et al., 2018).

Beyond the car itself, Klein and Selz (2000) have discussed
the rise of “cybermediation” in the automotive industry, and
the possible changes that “emerging electronic inter-
mediaries” would have on how automobiles were sold by
manufacturers and certified dealers. Steinberg’s (2021) recent
intervention on Toyota as a precursor to contemporary forms
of platform capitalism, considers the ways in which organiza-
tional models such as the “stack” or the “intermediary,” have
combined with technological innovations such as kanban
cards and kaizen production processes to offer new ways of
assembling, marketing, and selling automobiles.

In the following three sub-sections, I trace this trajectory of
mobile devices-as-sensing-devices to autonomous vehicles-as-
sensing-devices, with respect to the distribution of sensing, the
processing of sensor data, and the sourcing of hardware re-
quired for sensing.

Sensor distribution

Mackenzie and Munster (2019) discuss how contemporary
smartphone cameras operate. Rather than considering them
as makers of representational images, they understand them
as an “entire sensing ‘platform’ capable of carrying out the
distribution and integration of different forms of processing”
(Mackenzie & Munster, 2019, p. 14). Following this argu-
ment, smartphones do not simply possess a “camera” or a dis-
crete camera module capable of capturing photographs all by
itself, but a series of integrated, and connected features each
contributing to a different part of the processing of photo-
graphs nominally captured by a smartphone’s camera.

In recent years, smartphone cameras have increasingly inte-
grated a range of automated features, alongside increasing the
pixel count of the cameras themselves, and the number of
cameras and camera types inside the device itself. Whilst the
first two generations of the Apple iPhone merely contained a
fixed-focus 2.0 megapixel camera, the iPhone 13 contains
three cameras (front, wide, ultra-wide) dependent on the same
camera system, emphasizing developments in the sensor tech-
nology integrated into the device, such as “sensor-shift optical
image stabilisation” (Apple, 2022) to offer a better photo-
graphic experience. In the case of smartphone cameras, these
sensors do “not merely receive light but process light quanti-
ties alongside or in tandem with other information”
(Mackenzie & Munster, 2019, p. 14, emphasis added). The
importance of this platformed sensing was highlighted re-
cently, when it was reported that “opening the camera in cer-
tain apps causes the OIS [optical image stabilisation] motor”
in the new Apple iPhone 14 Pro Max to “go haywire” (Hern,
2022), with Apple previously warning users that high-
amplitude vibrations (such as those caused by a motorcycle
engine) could damage or degrade the phone’s OIS motor.

2 Enabling the interoperation of autonomous vehicles
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The story suggested that despite ostensibly being a software
feature, the presence of a physical motor, and the complica-
tions caused by secondary imaging apps, highlight the distrib-
uted nature of sensing in contemporary smartphones.
Autonomous vehicles equally rely on the distributed, inte-
grated processing of captured data (Hind, 2022b). Just like
smartphones have dedicated cameras for different shooting
requirements and sensors that help in specific situations, au-
tonomous vehicles are reliant on multi-sensing systems. In
general, three technologies have been used in the development
and testing of autonomous vehicles: “cameras” capturing
video, lidar devices, and radar.1 Whilst they can be arranged
in many different formations, most if not all manufacturers
currently testing autonomous vehicles use a combination of
all three, with lidar responsible for the bulk of the sensing
work itself. It is through the specific combination of these sen-
sor systems that autonomous vehicles render the outside
world knowable, offering a form of ‘machinic sensibility’
(Hong, 2016) that, in the case of lidar, involves material con-
tact between light pulses and physical objects such as trees
and road signs. It is through these innumerable points of con-
tact that autonomous vehicles nominally communicate with
their surroundings.

On Uber’s infamous autonomous vehicle programme, Uber
ATG, sold to Aurora in 2020 (Korosec, 2020), a fleet of mod-
ified Volvo XC90s were equipped with cameras, lidar, and ra-
dar. GM subsidiary Cruise, responsible for running
“robotaxi” services in San Francisco (Marshall, 2022), also
utilize all three, including so-called “articulating radars” for
greater coverage (Fischer, 2020). Even the electric vehicle
manufacturer Tesla, whose CEO Elon Musk has long derided
lidar as “a crutch” (Hawkins, 2018), entered into a partner-
ship with lidar manufacturer, Luminar (Hawkins, 2021). This
recognition of the need to have a variety of sensors, and sen-
sor types, stretches back to the DARPA Grand Challenges of
the mid-2000s, of which the winners, like 2005’s Stanford
team, equipped their vehicle Stanley, with five laser sensors
(i.e. lidar), a camera, and a radar unit (Thrun et al., 2007).
Autonomous vehicles thus are necessarily dependent upon dif-
ferent kinds of sensors, multiple sensing devices, different
sensing modes, and different assemblages of sensors in order
to distribute the processing of sensor data properly.

Sensor processing

As well as distributing and integrating camera-related func-
tions through the smartphone itself, they are also reliant upon
increasing the performance of image signal processors (ISPs)
in order to process data derived from the camera as well as
from other modules within the smartphone. These processes
are what Mackenzie and Munster understand as “imaging
operations” (Mackenzie & Munster, 2019, p. 14). As they
continue, ISPs do not simply process image data, nor do they
only process data from one system, but “also receives data
from, for example, the gyroscope, which provides image sta-
bilization and combines both signals into one digital image”
(Mackenzie & Munster, 2019, p. 15). Apple’s sensor-shift op-
tical image stabilization, for instance, uses information gener-
ated by the iPhone’s in-built gyroscope to move, or shift, the
image sensor itself, via actuators, making up to 5,000 adjust-
ments per second (Hristov, 2021). Hence, why high-
amplitude vibrations may disrupt such a process, dependent
on the making of high-speed physical corrections.

The transformation of smartphones into sensing devices,
however, has only been made possible through the develop-
ment of graphics processing units (GPUs). As Mackenzie and
Munster suggest, “GPU architecture, the silicon substrate of
millions of first-person standpoint 3D action games, with
their pursuit of detailed and fluidly mobile game physics, has
developed to render images aggregately computable through
massive calculative parallelism” (Mackenzie & Munster,
2019, p. 17). This “calculative parallelism” enables “vast
numbers of discrete arithmetic operations” to be “carried out
in parallel lanes” (Mackenzie & Munster, 2019, p. 17) to gen-
erate images. It is this calculative parallelism that can be wit-
nessed in the sensor work detailed herein, as autonomous
vehicle practitioners likewise grapple with how to handle
huge volumes of sensor data. Indeed, as Mackenzie and
Munster reiterate, smartphone ISPs are merely a “downsized
iteration of. . .image recognition processors for autonomous
vehicles” (Mackenzie & Munster, 2019, p. 16), such that for
big tech firms like Apple and Google, they function as the
computational foundations of scalar operations, like autono-
mous vehicle projects.

As Wilken and Thomas (2019) discuss, autonomous
vehicles generate huge volumes of data, requiring innovative
techniques to formalize, standardize, and prioritize sensor-
mediated communication. For instance, in how lidar systems
can be “calibrated to prioritize either the strongest or last dis-
tance point recorded” (Hind, 2022b, p. 69) in order to dis-
count certain environmental conditions that may inhibit
sensor-mediated communication, like fog or dust. Likewise,
that under certain test conditions some sensing systems might
be deactivated completely in order to avoid communication
conflicts where interoperability between such systems has not
yet been achieved, and certain vehicle components (such as a
braking system) have not been programmed to prioritize com-
mands sent from elsewhere. In cases such as the Uber ATG
crash in Tempe, Arizona in 2018, the Volvo XC90 vehicle in-
volved was equipped with an integrated advanced driver as-
sistance system (ADAS), disabled by Uber technicians to
avoid communication conflicts with in-house sensing systems
being developed (Hind, 2022b).

Sensor sourcing

Another important factor is the sourcing and assembly of
semiconductor chips, now otherwise known as central proc-
essing units, key components that combine with GPUs to offer
visual processing (Forelle, 2022). As the semiconductor “chip
crisis” of 2020–2022 developed, as a result of the global
Covid-19 pandemic, it became apparent that the sourcing of
semiconductor chips was becoming increasingly difficult.
Although the chips required for automobiles are not the same
kinds of chips for smartphones and other mobile devices, chip
fabrication facilities or “chipfabs” cannot easily be converted
to produce different chip sizes. As a result, there became a sig-
nificant backlog of semiconductor chip orders, such that car
manufacturers were faced with considerable production
delays and vehicle models essentially being “sold out” for the
year. The global automotive industry, thus, made 7.7 million
fewer cars in 2021 than 2020 (Ting-Fang & Li, 2022). As
well as political decisions made by the European Union (EU)
and USA to address the mid- to long-term supply-chain issues,
embodied in the tabled EU Chips Act and the US Chips and
Science Act, manufacturers resorted to downgrading vehicle
models previously reliant upon unavailable chips (Knight,
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2022; Szymkowski, 2021). These aspects are important to
consider as they modulate the political (legislation), economic
(manufacture), and technical (design) conditions for the adop-
tion of sensor-mediated communication, and the acceleration
of the ‘sensor society’ (Andrejevic & Burdon, 2015), as men-
tioned previously.

Compounding these problems was the fact that semicon-
ductor chip firms such as the Taiwan Semiconductor
Manufacturing Company (TSMC), have themselves been suf-
fering from supply issues (Ting-Fang & Li, 2022). Companies
such as Screen, a Japanese firm specializing in chemical clean-
ing equipment essential to the chip fabrication process, were
having to inform their clients that “valves, tubes, pumps and
containers made of special plastics” (Ting-Fang & Li, 2022)
for such equipment were difficult to source. As a result of
these “cascading” problems (Ting-Fang & Li, 2022), chip
firms had no choice but to extend already delayed delivery
dates for clients, such as automotive manufacturers. In light
of cascading supply-chain sourcing issues of everything from
raw materials to pipes, tubes, and pumps, political attempts
to “onshore” or regionalize semiconductor supply-chains
have faced significant challenges. Thus, Intel’s decision to
build a new chipfab in Magdeburg, Germany (Tagesschau,
2022), in light of the EU Chips Act, and the EU’s desire to re-
duce its dependence on “third-country suppliers” such as
Taiwan and South Korea (European Commission, 2022), will
not necessarily resolve these “upstream” supply-chain issues,
more rudimentary, but no less troublesome, in nature.

Sensor work/defining interoperability

In order to understand the work that is carried out in relation
to the distribution, processing, and sourcing of sensor tech-
nologies and sensor data in the development of autonomous
vehicles, I turn to the concept of “interoperability.” I define
interoperability as the transmission of sensor data from one
(sensing) system to other, connected systems deemed neces-
sary for subsequent decision-making processes. I understand
interoperability as more than “interconnectivity” in that (sen-
sor) data must be “formatted” (Volmar et al., 2020) for more
than one of these systems, in order to flow through them.
Here, interoperability is also different from “co-operation” in
that respective sensing and decision-making systems do not
necessarily work together, or co-operate, to achieve a mutual
aim, but interoperate to achieve specific modular, or parallel,
goals such as detecting 3D objects or processing video frames.
With this, these tasks are merely constituent parts of a contin-
ual, operational chain.

As Volmar et al. suggest, whilst the term “format”
describes “structural or programmatic relationships between
individual elements and their organizational logic” (Volmar
et al., 2020, p. 8), something like interoperability or intero-
perationality concerns the quality or form of the contents sub-
ject to such a structural or programmatic relationship. Thus,
the formatting of individual elements such as sensor data is
important, but for this article, only insofar as it offers an un-
derstanding of how such a formatting aids or enables
interoperability.

This article’s interest in interoperability is an extension of
existing work on “operative images” (Distelmayer, 2018;
Farocki, 2004; Hoel, 2018) and “operational data” (Walker
Rettburg, 2020). In this work, the notion of “operative”
images or “operational” data are derived through a

distinction with representational images and/or data, which
are not utilized for automated purposes, nor principally
designed to be viewed or read by human actors, but by
machinic systems (Farocki use the example of guided mis-
siles). As Walker Rettburg (2020, p. 9) considers, operational
data are data that is “algorithmically processed. . .with little
human involvement” with “no need for human-readable rep-
resentations.” Whilst, in a heuristic sense, it is necessary to
draw a distinction between human-readability on the one
hand (representation) and machine-readability on the other
(operational), much human work is still required to ensure
the ongoing operationality of machine-readable data, not
least in respect to the sensor data captured by autonomous
vehicles and their sensing systems.

Another critical distinction with work on operative images/
operational data is that, as I want to argue here, interopera-
tionality precedes operationality, rather than vice versa. If one
understands an operative image or operational data as having
an operative/operational being or existence, this is definable
in relation to their operationality within a specific, holistic
system. However, within the context of autonomous driving,
there is no such single, specific, holistic system; only distinct,
integrated systems for different tasks (sensing, processing,
control, etc.), such that it is inaccurate to state that the sensor
data flowing through, and between, such systems merely
“operate.” Instead, the interoperability and interoperational-
ity of each unit of sensor data must be ensured before any one
system “operates.” Here, rather than interoperability follow-
ing operability, operability is dependent firstly on
interoperability.

This continual, operational chain or “pipeline” along
which sensor data must flow, is critical to the eventual
“success” of autonomous driving—at least according to an
analysis of recent work in the industry. Moreover, that the
history of the development of autonomous vehicles, stretching
back to Stanley, Uber ATG, and Cruise, suggests that autono-
mous driving demands thinking and acting in an interopera-
tional fashion. As the section before introduced, sensor work
in the development of autonomous vehicles is dependent on
three aspects: distributing sensor devices, processing large vol-
umes of sensor data from these varied sources, and securitiz-
ing the sourcing of semiconductors and related components
underpinning both. Without each, the technical interopera-
tionality of autonomous vehicles hits a decidable snag.

Whilst this observation might appear obvious—that sensing
systems must be integrated with other systems—work to de-
velop them routinely takes a modular, and often sequential,
form, as leading autonomous vehicle engineer Urtasun (2021)
has argued. In other words, that separate engineering teams
in any autonomous vehicle firm, first and foremost, are re-
sponsible for their own systems. Any integration with other
systems usually comes second. As a result, any technical solu-
tions or methods devised to resolve problems related to the
operation of these discrete systems, typically involves ‘devel-
oping more and more modules’ (Urtasun, 2021). Any resul-
tant issues concerned with integration and interoperation are
therefore considered as secondary, and usually therefore
lesser, problems. This is despite the critical importance of
having such systems work inter-operationally. Conceiving in-
teroperability differently, therefore, requires a fundamental
re-organization of both workflow and team composition, be-
yond a “traditional engineering stack” (Zeng et al., 2021,
p. 1) that favors discrete, subdivided, tasks.

4 Enabling the interoperation of autonomous vehicles
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Thus, at this current stage in the development of autono-
mous vehicles, it is important to understand what I call here
the “sensor work” being undertaken to provisionally deliver
autonomous driving. Put otherwise, what is sensor work and
how is it organized to enable interoperability? This work, as I
have suggested already, involves experimentation with, and
in, machine vision in order to smooth the interoperability of
sensor-mediated communication between sensing systems. In
short, that there are parallel innovations in relation to sensor
distribution, processing, and computation. By focusing on
this practical sensor work, we can begin to understand how
sensor-mediated communication is enabled in the realm of au-
tonomous driving, and begin to gain a greater sense of how
the work around it is structured.

This is an important theoretical step, as the powers of sens-
ing technologies do not singularly reside in any discrete, nom-
inal sensing technology, device, or even system, but are
imbued at the various stages or moments along the opera-
tional chain/pipeline, at which different components are theo-
retically although not always actually “plugged into” each
other. It is at these moments that sensor work is done, and
through which interoperability is nominally achieved, and
without which the entire sensing assemblage either functions
sub-optimally or breaks down entirely.

Methods

Methodologically, the article offers an “operational analysis”
of sensing and sensor work, drawing on Bucher (2018),
Marres (2020), Friedrich and Hoel (2023), and Rieder and
Skop (2021), who variously approach the study of algorith-
mic systems from an operational, and situational, perspective.
Here, “operation” refers to the technical operation of a com-
putational system in question, whether the integrated algo-
rithmic processes underpinning social media platforms (as in
Bucher), robotic stereotactic radiosurgery systems (as in
Friedrich and Hoel), automated content moderation tools (as
in Rieder and Skop), or autonomous vehicle systems.

An operational approach avoids a macro- or media-centric
perspective on such phenomena, which might seek to estab-
lish, or at least proceed to investigate, the enduring properties
of the systems in question. In such a case, social media plat-
forms, robotic radiosurgery systems, automated content mod-
eration tools, or autonomous vehicle systems might come to
be understood as such through a search for, and definition of,
specific features (an algorithmically sorted newsfeed, a
banned word detector) or components (a motion synchroniza-
tion device, a lidar unit) that comprise them. Falling short,
perhaps, of a fully typological approach, such a perspective
nonetheless results in the categorization of various kinds of
technical systems into what they are provisionally meant to
do or said to be able to do at the expense of their understand-
ing as situated technologies.

At the other end of the spectrum, an operational approach
also avoids a strictly micro- or localized analysis that shears
specific performance of such systems either from generalizable
or categorizable properties, or from the iterative, relatable
work practices that enroll and span across them, instead seek-
ing to establish the originality of each instance of use. In other
words, a localized (or perhaps “hyper-localized”) account
might avoid making comparisons between how robotic radio-
surgery is performed in one hospital setting as opposed to

another, or how one content moderation tool is deployed in a
newsroom compared to a social media company.

Instead, operational analysis adopts a meso- or “middle-
range” (Friedrich & Hoel, 2023, p. 52) approach designed to
follow the operational “task. . .to be performed” (Friedrich &
Hoel, 2023, p. 52). In this article, this means attending to the
“fabrics” (Rieder & Skop, 2021, p. 2) of sensing and sensor
work, as a “variety of actors, sites, processes, [and] tech-
nologies” (Rieder & Skop, 2021, p. 13) are weaved together
to achieve certain operational goals. For Marres, this entails
the recognition of “the dynamic nature of situations”
(Marres, 2020, p. 7) and, consequently, the “unfolding of sit-
uations in computational settings” (Marres, 2020, p. 7).

More systematically, this means identifying a “task of inter-
est” (Friedrich & Hoel, 2023, p. 59) such as the treatment of a
tumor, or the moderation of comments on a news article, be-
fore delineating the so-called “operative moments” (Friedrich
& Hoel, 2023, p. 60) occurring in relation to the task, such as
the correct positioning of a patient, or the flagging of banned
words. An operational analysis, therefore, considers the socio-
technical operation of particular systems through the lens of
“tasks” and the necessary multistage processes or “operative
moments” through which systems are put to work.

I draw on four processes encountered in research into ma-
chine vision in an autonomous vehicle context that are best
explicated through such a “middle-range” approach. These
include: lidar point attenuation, 3D object detection, stream-
ing processing optimization, and depth sensor processing.

This research included participant observation of a virtual
summit on computer vision (“Machines Can See”) hosted in
June 2020 and a virtual workshop on autonomous driving
hosted in June 2021 (“Workshop on Autonomous Driving”
or WAD).2 International summits, conferences, and work-
shops concerning the technical aspects of sensor work are key
occasions in which cutting-edge methods, techniques, and
approaches are shared with those working in related fields of
computer vision and deep learning. Many of these events,
such as the Computer Vision and Pattern Recognition
(CVPR) conference (which hosted WAD), are principally or-
ganized by academics in the field, on behalf of US organiza-
tions such as the Institute of Electrical and Electronics
Engineers and Computer Vision Foundation (CVF).

However, they also typically have connections to major
commercial firms with an interest in computer vision and ma-
chine learning. Whilst CVF, for example, describes itself as a
“non-profit organization that fosters and supports research in
all aspects of computer vision” (CVF, 2022), it is also funded
by four “diamond sponsors”: Amazon, Microsoft, Google,
and Facebook. Similarly, CVPR has a substantial number of
“platinum sponsors” including Amazon, Apple, Qualcomm,
Tencent, and Datagen, as well as autonomous vehicle firms
Argo, Cruise, and Waymo. Argo and Waymo are also recur-
ring (2020–2023) participants in WAD, offering keynote
speakers, and prize monies to entrants (WAD, 2022, 2023).
As a result, work presented at such conferences on image rec-
ognition, data segmentation, and visual processing is of con-
siderable commercial interest.

Yet, on their own these events do not necessarily capture the
liveness, and diversity, of approaches to computer vision and
machine learning. Accordingly, it is important to be able to
trace and connect the circulation of key technical papers pub-
lished by those within related fields. This orientation towards
the “social life” of machine learning methods (Savage, 2013)
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and associated sensor work was attained through the organiza-
tion of two “hands-on” workshops. The first, “Making Sense
of Sensor Data,” provided the opportunity to explore how sen-
sor data is ordinarily used to develop training datasets for ma-
chine learning purposes, such as with the KITTI dataset
(Geiger et al., 2012) or Waymo’s Open Dataset (Waymo,
2019). The second workshop, “Taking up the Challenge,” of-
fered the opportunity to examine how these training datasets
are used in so-called machine vision “challenges,” such as in
Waymo’s Open Dataset Challenges (Waymo, 2020).3

Convention within the world of computer vision and ma-
chine learning means that novel methods or techniques are
uploaded onto open-access paper repositories such as arXiv
and popular code repositories such as Github. Through these
common practices, users of both platforms can not only read
about specific methods or techniques, but also potentially use
them as scaffolding or “backbones” for additional work—
something Rieder and Skop refer to as a “cooperative, multi-
polar model” (Rieder & Skop, 2021, p. 10). Whilst this article
does not offer a systematic analysis of the web of connections
each technique ordinarily offers, these features have been
used to gauge the impact each published method has had, and
the prior work it is dependent on, such as the datasets used to
train particular machine learning models. The arXiv submis-
sion for the Mask R-CNN method used for object instance
segmentation, cited by 20,844 other academic articles, used
both the COCO and Cityscapes datasets, two significant im-
age datasets used for training object recognition/segmentation
models (He et al., 2018).

Both aspects (industry conferences, self-organized work-
shops) that I have introduced here build on extant knowledge
of where, and how, machine vision research is taking place,
both commercially and academically, arising from past work
on autonomous vehicles (Hind, 2019, 2022a, 2022b).

Sensor work in action

An examination of these sensor processes not only intends to
surface the sensor work needed to make autonomous vehicles
themselves “work,” but also the range of possible strategies
devised, and devisable, by practitioners to deal with the neces-
sary interoperability of autonomous vehicles. As the final sec-
tion of the article will examine, these strategies involve a great
degree of invention and inventiveness to develop possible,
plausible, and workable, methods for various sensor-related
issues, such as removing the interference of “spurious” objects
like rain droplets, or tackling “stale” video frames. In this,
sensor-mediated communication within autonomous vehicles
is only made possible by such work, without which autono-
mous vehicles would cease to offer “autonomous” decision
making and movement. I proceed by considering each of the
processes in turn as they appear chronologically in the opera-
tional pipeline, from initial sensing to the design of the so-
called “bounding boxes.”

Lidar point attenuation

The first sensor process involves the attenuation, or ameliora-
tion, of sensor data “noise” (Espineira et al., 2021). Lidar
point attenuation is an important process because of the ex-
tent to which lidar points, as rays of light, are distorted by
other objects. The most problematic of these other objects, yet
perhaps also the least perceptible, are raindrops and dust par-
ticles. Whilst both phenomena invariably play a part in how

any autonomous vehicle proceeds through an environment,
the material presence of rain droplets and dust particles close
to a lidar unit has the potential to significantly disrupt sensor
processes. As Espineira et al. (2021, p. 8) write, “if a lidar
beam intersects with a raindrop at a short distance from the
transmitter, the raindrop can reflect enough of the beam back
to the receiver such that it is detected as an object.”

Likewise, that raindrop interference can also degrade the
strength and the so-called “range performance” (Espineira
et al., 2021, p. 8) of a lidar device itself. Thus, if lidar data are
to be made useful, engineers must be attuned to the variable
properties of these troublesome atmospheric agents. Without
knowledge of exactly how raindrops and dust particles affect
the operation of lidar devices, researchers are likely to assume
minimal mitigation strategies are necessary. Whilst dust par-
ticles may not present quite as frequent a problem for autono-
mous vehicles typically driving on tarmac roads, tackling
them first emerged as a problem during the original DARPA
Grand Challenges, set on the dusty, desert roads of Nevada,
USA (Buehler et al., 2007).

Espineira et al.’s solution involves the modelling of rain
droplet particles within a virtual environment. What is impor-
tant here is that such a “probabilistic rain model” (Espineira
et al., 2021, p. 8) must be made interoperable with any real-
world, real-time lidar device, such that it is capable of ingest-
ing a “pointcloud affected by the rain in the same format and
data-rate of [a] pointcloud generated by a real lidar sensor”
(Espineira et al., 2021, p. 7). In order to do so, the researchers
used the Unreal Gaming Engine, software typically used to de-
sign virtual gaming environments, but increasingly used
within autonomous vehicle development to design simulations
(Steinhoff, 2022). The Unreal Gaming Engine allowed them
to develop a real-time rain model through which they could
modify raindrop size (between 0.5 mm and 6 mm) and rain-
fall intensity (e.g. between 10 mm/hr and 50 mm/hr, for mod-
erate and heavy rainfall). By running a simulated, realistic
lidar point cloud within the game engine, in concert with the
rain model, the researchers were, in principle, able to generate
different scenarios in which rain droplets variously interfered
with lidar point distribution.

As Espineira et al. (2021, p. 8) state, this “opens the possi-
bility to study the combined real degradation of visual and li-
dar sensors in the case of rainfall of different intensities [as
well as] the possibility to vary the detector threshold. . .tail-
ored to the performance of a specific commercial lidar.” In ef-
fect, that their virtual environment could be used to
modulate, or fine-tune, the sensitivity of any particular lidar
sensor, to enable it to ignore, or more specifically to
“discount,” rain droplets at various distances. Moreover, that
such fine-tuning could easily be performed with mixed engi-
neering teams, each of those with an express interest in ensur-
ing the lidar data entering subsequent systems is clean and
useful.

Dealing with the noise generated through such sensing pro-
cesses is of critical importance, as any sensor data that subse-
quently passes along the pipeline to be acted upon by object-
recognition algorithms might, without such attenuation work,
result in the autonomous vehicle responding to so-called
“hallucinations” (Kayhan et al., 2021), objects that are not re-
ally there, or do not pose as big a problem as their recorded
“object-ness” supposes.4 Thus, we can understand this sensor
work as ideally exhibiting a level of interoperability between
simulated rain model and real-world scenario (if done
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correctly), that ultimately should refine interoperability be-
tween the perception and recognition stages of the decision-
making process, as techniques for discounting rain droplets,
dust particles, and similar objects are developed.

3D object detection

The second sensor process concerns the ability to detect and
orient vehicles within 3D space (Hu et al., 2020). In short, to
improve the level of visibility enabled through the chosen
method of sensing. Rather than decide to use another type of
sensor, Hu et al. stick with lidar, choosing to engage with the
operational issues it throws up. That main issue, as the
authors write, is that lidar points effectively destroy or other-
wise elide data on phenomena behind each lidar point cap-
tured. This is because a lidar point will be returned when it
hits an object. Any secondary object hidden behind this initial
object, therefore, is not captured at all, essentially destroyed
within the dataset being generated. As they contend, “once a
particular scene element is measured at a particular depth, vis-
ibility ensures that all other scene elements behind its line-of-
sight are occluded” (Hu et al., 2020, p. 2). As a result of this
loss of data, “such 3D sensored data might be better charac-
terized as ‘2.5D’” (Hu et al., 2020, p. 2), as some objects
physically represented in space cannot, and will not, be cap-
tured each time a lidar scan is performed. Naturally, this
could represent a problem for any autonomous vehicle, ham-
pered by lidar’s “occlusionary” capacities.

Their solution is a technique referred to as “raycasting.”
Ordinarily when a lidar point is recorded it generates a spe-
cific coordinate in 3D space, the exact point at which an ob-
ject was hit, and the lidar point returned. Repeated many
thousands of times for every lidar “sweep” and one builds up
a series of positively recorded coordinates. However, the so-
called “freespace” in between each object and the lidar unit is
not typically recorded. Hu et al. propose a method for gener-
ating a “3D voxel grid” in which each coordinate is recorded
as either “occupied, free, or unknown” (Hu et al., 2020, p. 4),
thereby allowing each point within 3D space to be provided
with a value, regardless of whether a lidar point has been gen-
erated. They refer to this as a “visibility volume” (Hu et al.,
2020, p. 4), and can be thought of as a technique for turning
the 2.5D of lidar into fully 3D data.

Here, what becomes more evident is how the re-formatting
of lidar data into “full” 3D form, with the help of an interme-
diary (the 3D voxel grid), is designed to yield a greater level of
interoperability between lidar input and a desired feature map
output, key to the “diagrammatic abstractions” (Mackenzie,
2017, p. 55) made through, and required by, machine learn-
ing. Without the 3D voxel grid, so the researchers would ar-
gue, the lidar input offers an impoverished view of the world,
unable to properly record all manner of occluded objects.
What this stated technique offers, therefore, is a way of en-
hancing or augmenting the perceptive qualities of lidar, such
that richer, fuller, and deeper snapshots of the immediate en-
vironment can be captured.

Streaming processing optimization

The third sensor process entails the speeding-up, and econo-
mization, of video frame processing (Li et al., 2020). In princi-
ple, “streaming processing optimization,” a term coined by
researchers at the Argo AI Center for Autonomous Vehicle
Research (Carnegie Mellon University, Pittsburgh, USA), is
designed to tackle one particularly troublesome issue in

vehicle perception. This is the trade-off between accurate and
quick image understanding, where accuracy is defined by
achieving a certain threshold of objects correctly identified
and categorized, and speed is defined by completing an image
understanding process in advance of subsequent phases in the
operational pipeline, such as motion forecasting and plan-
ning. An image understanding process that takes too long to
complete would result in objects within such images (namely,
other road users) not being properly identified/classified.

For example, if a cyclist was improperly categorized as an
ordinary vehicle and upon crossing the autonomous vehicle
was still deemed to be moving at the (faster) speed of a vehi-
cle, rather than a bicycle. Consequently, the cyclist might be
at a higher risk of being hit by the autonomous vehicle, believ-
ing the cyclist was traveling faster than they were. Thus, opti-
mizing the processing of such image recognition tasks is of
critical importance.

The solution offered by Li et al. (2020, p. 1) is something
they call “dynamic scheduling.” Counterintuitively, the algo-
rithmic object-recognition system addresses any potential la-
tency problem between perception system and world by
“sitting idle and ‘doing nothing’” (Li et al., 2020, p. 1) rather
than tackle so-called “stale frames” (Li et al., 2020, p. 20),
snapshots of the immediate real world, now in the past. Thus,
rather than have an object-recognition system sequentially
line-up video frames to process, fully completing one frame
before moving onto the next, if the current state of the real-
world has progressed beyond the workflow of the system
(say, if the vehicle has increased its speed, thereby increasing
the necessary speed at which frames must be processed, and
objects identified/classified), it simply waits until it is once
again able to process the current situation.

As Li et al. (2020, p. 1) consider, a “crucial quantity gov-
erning the responsiveness of [an autonomous] agent is its re-
action time.” Providing it the opportunity to wait, rather than
processing stale frames, so their argument goes, gifts the sys-
tem the opportunity to react quicker to current situations as
they emerge. Thus, dynamic scheduling smooths the interop-
eration between video input and classification outputs, mean-
ing that critical processing capacity is not wasted by parsing
“useless” frames. Arguably in the absence of such a method
engineers would face a greater hurdle in processing images
both quickly and accurately. What this technique arguably
offers is a recalculation of the necessary pacing of interopera-
bility—not that video inputs and classification outputs need
to interoperate, but that interoperation proceeds situationally,
with the system cognizant of the value of the frame to be proc-
essed, rather than ignorant of its irrelevance to the current
situation.

Depth sensor processing

The final sensor process is the generation of 3D “bounding
boxes” from monocular RGB images (Gählert et al., 2020).
This is a process developed by researchers associated with the
popular Cityscapes dataset, as mentioned earlier, often used
by autonomous vehicle projects for training object-
recognition models. The technique they have developed is
designed to avoid “sensor setup, calibration and syn-
chronization” (Gählert et al., 2020, p. 2) issues commonly en-
countered when using lidar as part of a multi-sensing system.
One issue they identify is the “sparsity of lidar measurements,
especially for distant objects” (Gählert et al., 2020, p. 5).
Another is that 3D bounding boxes derived from lidar data
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can “result in imprecise reprojections into. . .RGB images”
(Gählert et al., 2020, p. 3), as synchronization issues between
individual lidar sensors might result in being unable to cor-
rectly capture fast-moving objects, especially those closest to
the autonomous vehicle itself. Invariably some bounding
boxes, although they might accurately contain the extent of
the object in question, also do not take road curvature into ac-
count, meaning that pitch and roll annotations are improperly
defined. For cities or areas with steep inclines or undulating
terrain, this phenomenon has the potential to be both signifi-
cant and frequent, especially for vehicles nudging out of steep
side-roads, as Gählert et al. show.

Their solution is to develop a method to generate 3D
bounding boxes using only 2D images. Here, rather than try-
ing to correct the various calibration and synchronization
issues with lidar mentioned above, post facto, depth sensor
processing generates 3D bounding boxes from 2D images
captured by camera alone. Whilst Gählert et al. manage to
avoid any such synchronization issues between sensing sys-
tems and types of sensor data (lidar, camera), there are still
necessary tradeoffs. As cameras do not have the possibility to
“see” through physical objects, depth sensor processing must
involve an evaluation of whether an object is “occluded” (i.e.
obscured) or “truncated.” All further objects proceed to be
classified into one of 24 further classes, corresponding to the
general dimensions of different vehicle types such as a sedan
or large van.

In developing this alternative, so the authors argue, there is
a greater synchronization, or interoperability, between raw
sensor data and the algorithmic annotation process, that does
not require integration between different sensing modes.
Here, lidar is itself understood as an impediment to interoper-
ability, especially as its use ultimately requires the translation
of 3D point clouds into 2D outputs. Yet, as this approach
shows, interoperability does not produce binary states, where
interoperability is either achieved or it is not. What is lost
through the above, is the depth of sensing offered by lidar, un-
able to be matched by any camera. In strengthening the inter-
operability between image inputs and bounding box outputs
further down the pipeline, the method only weakens the per-
ceptive capacities of the vehicle in the first place.

Conclusion

In this article, I have sought to provide an account of the so-
called “sensor work” being carried out in the development of
autonomous vehicles. Necessarily incremental, such work
deals with the knotty question of “interoperability”: how sen-
sor data must not only be captured, but also cleaned, cor-
rected, formatted, and re-presented in order to pass further
along the operational “pipeline,” to be subsequently proc-
essed by object-recognition algorithms and motion planning
modules in any autonomous vehicle system.

Whilst much of the technical work discussed above does
not refer to interoperationality by name, all of this work pro-
ceeds on the basis that the sensor data being used has
“somewhere else to go.” But that, critically, before it is sent
along the pipeline that certain sensor-related issues must be
tackled in advance. However, none of the proposed techni-
ques necessarily provide ultimate solutions, nor cast-iron
guarantees, that using such methods will entirely eradicate the
various problems inherent to the distributive, processual, and
computational capacities of sensor technologies and sensor

data. Instead, they all proceed on the basis that each problem
they orientate their technique towards is conditionally resolv-
able, conditional on an array of factors such as the distribu-
tive arrangement of sensors, the speed of processors, or the
overall computational capacity.

For the question of sensor-mediated communication these
are, hopefully, valuable observations. Both the “rise of
sensors” and the “explosion of sensor-derived data”
(Andrejevic & Burdon, 2015, p. 25) have yielded ever-more
complex infrastructural, organizational, and operational
arrangements in order to capture, process, order, and value
myriad forms of sensor-mediated communications. That
much of this takes place out of sight, beyond the immediate
purview of ordinary users and operators of such technical sys-
tems, is a sign that the landscape of both computer-mediated
communication and human–computer interaction is rapidly
shifting, such that sensor-mediated communication can now
be considered a default mode in many settings.

In many of the techniques discussed here, there is an ex-
plicit acknowledgement that ideal conditions do not exist,
and that each method must therefore take account of the spe-
cificity of each problem, as well as the technical set-up of each
autonomous vehicle system. In other words, that the research-
ers broadly acknowledge, and work on the basis, that their
methods have a positionality to them, necessarily situated and
“biased” to the conditions of their making, like all projects in-
volving algorithms and machine learning (Jaton, 2021).

The principle theoretical foundation for the article has
therefore been interoperability. What I have sought to argue
within is that to understand sensor-mediated communication
one must necessarily begin from the interoperation between,
rather than the operation of, specific sensing systems and
connected, interpretive, algorithmic systems. In respect to
autonomous driving, as Zeng et al. (2021, p. 1) write:
“most. . .companies have large engineering teams working on
each sub-problem in isolation,” each working to a sub-system
solution. Yet, approaching sensor work in a modular fashion
inevitably generates problems for engineers further down the
(pipe)line, where an “advance in one sub-system does not eas-
ily translate to an overall system performance improvement”
(Zeng et al., 2021, p. 1).

If we are to properly understand how sensor-mediated com-
munication is enabled as it proliferates throughout the world,
in new sensing and algorithmic contexts, and through novel
sensing situations, then it would seem sensible to pay atten-
tion to where, and how, work is being done to enable interop-
erability—and where the organizational, or technical, hurdles
to ensuring it may lie.
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Notes

1. Whilst there seems to be a sharp distinction between “cameras”

and “sensors” in the smartphone world, such a distinction is harder

to make in the world of autonomous vehicles. Even though vehicles

may be equipped with video recorders to capture footage, they are

still ordinarily referred to as “cameras” rather than recorders.

Indeed, whilst lidar and radar are ordinarily referred to as

“sensors,” use of terms like “see” and “sight” colloquially convey

their qualities as modes of sensing, despite not offering the same

kind of sight as cameras or video recorders.
2. The “Machines Can See” summit was held online from June 8 to

June 10, 2020, and the “Workshop on Autonomous Driving

(WAD)” was held online on June 20, 2021.
3. The workshop “Making Sense of Sensor Data” was held online

from November 8 to November 10, 2021 and organized by mem-

bers of the A03 Navigation in Online/Offline Spaces project of

SFB1187 Media of Cooperation at the University of Siegen,

Germany. The workshop “Taking up the Challenge” was held

from July 14 to July 15, 2022 and also organized by members of

the A03 Navigation in Online/Offline Spaces project of SFB1187

Media of Cooperation at the University of Siegen. I thank Max

Kanderske and Fernando van der Vlist for co-organization of these

events.
4. I thank Susanne Förster for first alerting me to the concept of hallu-

cinations in machine vision work.

References

Alvarez León, L. F. (2019). How cars became mobile spatial media: A

geographical political economy of on-board navigation. Mobile

Media & Communication, 7(3), 362–379. https://doi.org/10.1177/

2050157919826356
Andrejevic, M., & Burdon, M. (2015). Defining the sensor society.

Television & New Media, 16(1), 19–36. https://doi.org/10.1177/

1527476414541552
Apple (2022). iPhone 13. Apple. https://www.apple.com/uk/iphone-13/.

Bucher, T. (2018). If. . .then: Algorithmic power and politics. Oxford

University Press. https://doi.org/10.1093/oso/9780190493028.001.

0001
Buehler, M., Iagnemma, K., & Singh, S. (2007). The 2005 DARPA

grand challenge: The great robot race. Springer.

Computer Vision Foundation (2022). The computer vision foundation.

CVF. https://www.thecvf.com/

Distelmayer, J. (2018). Carrying computerization: Interfaces, opera-

tions, depresentations. In L. Feiersinger, K. Friedrich, & M.

Queisner (Eds.), Image – action – space: Situating the screen in visual

practice (pp. 55–68). De Gruyter. https://doi.org/10.1515/9783110

464979-005

European Commission (2022). European Chips Act: Questions and

answers. European Commission. https://ec.europa.eu/commission/

presscorner/detail/en/QANDA_22_730
Espineira, J.P., Robinson, J., Groenewald, J., Hung Chan, P., &

Donzella, V. (2021). Realistic LiDAR with noise model for real-time

testing of automated vehicles in a virtual environment. IEEE Sensors

Journal, 21(8), 9919–9926. https://doi.org/10.1109/JSEN.2021.

3059310
Farocki, H. (2004). Phantom images. Public, 29, 12–22.
Featherstone, M. (2004). Automobilities: An introduction. Theory,

Culture & Society, 21(4–5), 1–24. https://doi.org/10.1177/0263276

404046058

Fischer, J. M. (2020, July 1). The decision behind using articulating sen-

sors on Cruise AVs. Cruise. https://medium.com/cruise/cruise-embed

ded-systems-articulating-radars-7cae24642930
Forelle, M. C. (2022). The material consequences of “chipification”:

The case of software-embedded cars. Big Data & Society, 9(1),

1–12. https://doi.org/10.1177/20539517221095429

Friedrich, K., & Hoel, A. A. S. (2023). Operational analysis: A method

for observing and analyzing digital media operations. New Media &

Society, 25(1), 50–71. https://doi.org/10.1177/1461444821998645

Gabrys, J. (2016). Program earth: Environmental sensing technology

and the making of a computational planet. University of Minnesota

Press.

Gählert, N., Jourdan, N., Cordts, M., Franke, U., & Denzler, J. (2020).

Cityscapes 3D: Dataset and benchmark for 9 DoF vehicle detection.

ArXiv. https://doi.org/10.48550/arXiv.2006.07864

Geiger, A., Lenz, P., & Urtasun, R. (2012). Are we ready for autono-

mous driving? The KITTI Vision Benchmark Suite. In 2012 IEEE

conference on computer vision and pattern recognition, Providence,

RI, June 16–21, 2012, pp. 3354–3361. https://doi.org/10.1109/

CVPR.2012.6248074
Hawkins, A. J. (2018). Elon Musk still doesn’t think LIDAR is neces-

sary for fully driverless cars. The Verge. https://www.theverge.com/

2018/2/7/16988628/elon-musk-lidar-self-driving-car-tesla
Hawkins, A. J. (2021). Elon Musk called lidar a “crutch,” but now

Tesla is reportedly testing Luminar’s laser sensors. The Verge.

https://www.theverge.com/2021/5/24/22451404/tesla-luminar-li

dar-elon-musk-autonomous-vehicles
He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2018). Mask R-CNN.

ArXiv. https://doi.org/10.48550/arXiv.1703.06870

Hern, A. (2022, September 19). Bug in iPhone 14 Pro Max causes cam-

era to physically fail, users say. The Guardian. https://www.theguar

dian.com/technology/2022/sep/19/iphone-14-pro-max-camera-opti

cal-image-stabilisation-motor
Hind, S. (2019). Digital navigation and the driving-machine:

Supervision, calculation, optimization, and recognition. Mobilities,

14(4), 401–417. https://doi.org/10.1080/17450101.2019.1569581
Hind, S. (2021). Dashboard design and the “datafied” driving experi-

ence. Big Data & Society, 8(2), 1–14. https://doi.org/10.1177/

20539517211049862

Hind, S. (2022a). Making decisions: The normal interventions of Nissan

‘mobility managers’. Mobilities, 17(4), 467–483. https://doi.org/10.

1080/17450101.2021.1988682

Hind, S. (2022b). Machinic sensemaking in the streets: More-than-lidar

in autonomous vehicles. In G. Rose (Ed.), Seeing the city digitally:

Processing urban space and time (pp. 57–80). Amsterdam University

Press. https://www.aup.nl/en/book/9789463727037/seeing-the-city-

digitally
Hind, S., & Gekker, A. (2022). Automotive parasitism: Examining

Mobileye’s “car-agnostic” platformisation. New Media & Society,

0(0), 1–21. https://doi.org/10.1177/14614448221104209
Hind, S., Kanderske, M., & van der Vlist, F. (2022). Making the car

‘platform ready’: How big tech is driving the platformization of au-

tomobility. Social Media þ Society, 8(2), 1–13. https://doi.org/10.

1177/20563051221098697
Hoel, A. S. (2018). Operative images: Inroads to a new paradigm of me-

dia theory. In L. Feiersinger, K. Friedrich, & M. Queisner (Eds.),

Image – action – space: Situating the screen in visual practice (pp.

11–22). De Gruyter. https://doi.org/10.1515/9783110464979-002
Hong, S-H. (2016). Data’s intimacy: Machinic sensibility and the

quantified self. Communication, 5(3), 1–36. https://doi.org/10.7275/

R5CF9N15
Hristov, V. (2021, September 2). What is sensor shift stabilization and is

it better than optical image stabilization (OIS)? Phone Arena. https://

www.phonearena.com/news/What-is-sensor-shift-stabilization-vs-

OIS_id133572

Hu, P., Ziglar, J., Held, D., & Ramanan, D. (2020). What you see is

what you get: Exploiting visibility for 3D object detection. ArXiv.

https://doi.org/10.48550/arXiv.1912.04986
Jaton, F. (2021). The constitution of algorithms: Ground-truthing, pro-

gramming, formulating. MIT Press. https://doi.org/10.7551/mit

press/12517.001.0001
Kayhan, O. S., Vredebregt, B., & van Gemert, J. C. (2021).

Hallucination in object detection: A study in visual part verification.

ArXiv. https://doi.org/10.48550/arXiv.2106.02523

Journal of Computer-Mediated Communication (2023) 9

D
ow

nloaded from
 https://academ

ic.oup.com
/jcm

c/article/28/5/zm
ad014/7248794 by U

niversity of M
anchester user on 23 August 2023

https://doi.org/10.1177/2050157919826356
https://doi.org/10.1177/2050157919826356
https://doi.org/10.1177/1527476414541552
https://doi.org/10.1177/1527476414541552
https://www.apple.com/uk/iphone-13/
https://doi.org/10.1093/oso/9780190493028.001.0001
https://doi.org/10.1093/oso/9780190493028.001.0001
https://www.thecvf.com/
https://doi.org/10.1515/9783110464979-005
https://doi.org/10.1515/9783110464979-005
https://ec.europa.eu/commission/presscorner/detail/en/QANDA_22_730
https://ec.europa.eu/commission/presscorner/detail/en/QANDA_22_730
https://doi.org/10.1109/JSEN.2021.3059310
https://doi.org/10.1109/JSEN.2021.3059310
https://doi.org/10.1177/0263276404046058
https://doi.org/10.1177/0263276404046058
https://medium.com/cruise/cruise-embedded-systems-articulating-radars-7cae24642930
https://medium.com/cruise/cruise-embedded-systems-articulating-radars-7cae24642930
https://doi.org/10.1177/20539517221095429
https://doi.org/10.1177/1461444821998645
https://doi.org/10.48550/arXiv.2006.07864
https://doi.org/10.1109/CVPR.2012.6248074
https://doi.org/10.1109/CVPR.2012.6248074
https://www.theverge.com/2018/2/7/16988628/elon-musk-lidar-self-driving-car-tesla
https://www.theverge.com/2018/2/7/16988628/elon-musk-lidar-self-driving-car-tesla
https://www.theverge.com/2021/5/24/22451404/tesla-luminar-lidar-elon-musk-autonomous-vehicles
https://www.theverge.com/2021/5/24/22451404/tesla-luminar-lidar-elon-musk-autonomous-vehicles
https://doi.org/10.48550/arXiv.1703.06870
https://www.theguardian.com/technology/2022/sep/19/iphone-14-pro-max-camera-optical-image-stabilisation-motor
https://www.theguardian.com/technology/2022/sep/19/iphone-14-pro-max-camera-optical-image-stabilisation-motor
https://www.theguardian.com/technology/2022/sep/19/iphone-14-pro-max-camera-optical-image-stabilisation-motor
https://doi.org/10.1080/17450101.2019.1569581
https://doi.org/10.1177/20539517211049862
https://doi.org/10.1177/20539517211049862
https://doi.org/10.1080/17450101.2021.1988682
https://doi.org/10.1080/17450101.2021.1988682
https://www.aup.nl/en/book/9789463727037/seeing-the-city-digitally
https://www.aup.nl/en/book/9789463727037/seeing-the-city-digitally
https://doi.org/10.1177/14614448221104209
https://doi.org/10.1177/20563051221098697
https://doi.org/10.1177/20563051221098697
https://doi.org/10.1515/9783110464979-002
https://doi.org/10.7275/R5CF9N15
https://doi.org/10.7275/R5CF9N15
https://www.phonearena.com/news/What-is-sensor-shift-stabilization-vs-OIS_id133572
https://www.phonearena.com/news/What-is-sensor-shift-stabilization-vs-OIS_id133572
https://www.phonearena.com/news/What-is-sensor-shift-stabilization-vs-OIS_id133572
https://doi.org/10.48550/arXiv.1912.04986
https://doi.org/10.7551/mitpress/12517.001.0001
https://doi.org/10.7551/mitpress/12517.001.0001
https://doi.org/10.48550/arXiv.2106.02523


Klein, S., & Selz, D. (2000). Cybermediation in auto distribution:
Channel dynamics and conflicts. Journal of Computer-Mediated
Communication, 5(3). https://doi.org/10.1111/j.1083-6101.2000.
tb00347.x

Knight, S. (2022, May 30). Companies are hacking their way around
the chip shortage. Wired. https://www.wired.com/story/chip-short
age-hacks/

Korosec, K. (2020, December 7). Uber sells self-driving unit Uber ATG
in deal that will push Aurora’s valuation to $10B. TechCrunch.
https://techcrunch.com/2020/12/07/uber-sells-self-driving-unit-uber-

atg-in-deal-that-will-push-auroras-valuation-to-10b/
Li, M., Wang, Y-X., & Ramanan, D. (2020). Towards streaming per-

ception. ArXiv. https://doi.org/10.48550/arXiv.2005.10420
Mackenzie, A. (2017). Machine learners: Archaeology of a data practice.

MIT Press.

Mackenzie, A., & Munster, A. (2019). Platform seeing: Image ensembles
and their invisualities. Theory, Culture & Society, 36(5), 3–22.

https://doi.org/10.1177/0263276419847508
McCosker, A., & Wilken, R. (2020). Automating vision: The social im-

pact of the new camera consciousness. Routledge.

Marres, N. (2020). For a situational analytics: An interpretive method-
ology for the study of situations in computational settings. Big Data
& Society, 7(2), 1–16. https://doi.org/10.1177/2053951720949571

Marshall, A. (2022, July 8). Cruise’s robot car outages are jamming up
San Francisco. Wired. https://www.wired.com/story/cruises-robot-

car-outages/
Martens, B., & Zhao, B. (2021). Data access and regime competition: A

case study of car data sharing in China. Big Data & Society, 8(2),

1–11. https://doi.org/10.1177/20539517211046374
Meyers, G., & Van Hoyweghen, I. (2020). “Happy failures”:

Experimentation with behaviour-based personalisation in car insur-
ance. Big Data & Society, 7(1), 1–14. https://doi.org/10.1177/
2053951720914650
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